Physiological characterization of stolon regression in a colonial hydroid.

نویسندگان

  • Kimberly S Cherry Vogt
  • Gabrielle C Geddes
  • Lori S Bross
  • Neil W Blackstone
چکیده

As with many colonial animals, hydractiniid hydroids display a range of morphological variation. Sheet-like forms exhibit feeding polyps close together with short connecting stolons, whereas runner-like forms have more distant polyps and longer connecting stolons. These morphological patterns are thought to derive from rates of stolon growth and polyp formation. Here, stolon regression is identified and characterized as a potential process underlying this variation. Typically, regression can be observed in a few stolons of a normally growing colony. For detailed studies, many stolons of a colony can be induced to regress by pharmacological manipulations of reactive oxygen species (e.g. hydrogen peroxide) or reactive nitrogen species (e.g. nitric oxide). The regression process begins with a cessation of gastrovascular flow to the distal part of the stolon. High levels of endogenous H(2)O(2) and NO then accumulate in the regressing stolon. Remarkably, exogenous treatments with either H(2)O(2) or an NO donor equivalently trigger endogenous formation of both H(2)O(2) and NO. Cell death during regression is suggested by both morphological features, detected by transmission electron microscopy, and DNA fragmentation, detected by TUNEL. Stolon regression may occur when colonies detect environmental signals that favor continued growth in the same location rather than outward growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causes and consequences of stolon regression in a colonial hydroid.

A cnidarian colony can be idealized as a group of feeding polyps connected by tube-like stolons. Morphological variation ranges from runner-like forms with sparse polyp and stolon development to sheet-like forms with dense polyp and stolon development. These forms have typically been considered in a foraging context, consistent with a focus on rates of polyp development relative to stolon elong...

متن کامل

Control of Hydroid Colony Form by Surface Heterogeneity

The colonial hydroid Podocoryna carnea grows adherent to surfaces progressing along them by a motile stolon tip. We here ask whether the stolon tip grows preferentially within grooves etched in silicon wafers. In a series of pilot experiments, we varied the dimensions of grooves and found that stolons did not utilize grooves with a width:depth of 5:5 μm or 10:10 μm, occasionally followed groove...

متن کامل

Morphological, physiological and metabolic comparisons between runner-like and sheet-like inbred lines of a colonial hydroid.

Hydractiniid hydroids display a range of morphological variation from sheet-like forms (i.e. closely spaced polyps with high rates of stolon branching) to runner-like forms (i.e. widely spaced polyps with low rates of stolon branching), thus exemplifying the patterns of heterochrony found in many colonial animals. A sheet-like and a runner-like inbred line of Podocoryne carnea were produced to ...

متن کامل

Reactive oxygen species and the regulation of hyperproliferation in a colonial hydroid.

Colonies of Podocoryna carnea circulate gastrovascular fluid among polyps via tubelike stolons. At polyp-stolon junctions, mitochondrion-rich cells in part regulate this gastrovascular flow. During competition, colonies hyperproliferate nematocytes and stolons; nematocysts are discharged until one colony is killed. Hyperproliferation then ceases, and normal growth resumes. Here, competing colon...

متن کامل

Structure and signaling at hydroid polyp-stolon junctions, revisited

The gastrovascular system of colonial hydroids is central to homeostasis, yet its functional biology remains poorly understood. A probe (2',7'-dichlorodihydrofluorescein diacetate) for reactive oxygen species (ROS) identified fluorescent objects at polyp-stolon junctions that emit high levels of ROS. A nuclear probe (Hoechst 33342) does not co-localize with these objects, while a mitochondrial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2008